A source book in mathematics, 1200-1800 / edited by D.J. Struik.


Cambridge, Mass. : Harvard University Press, 1969.

Location Call Number Status Consortium Loan
George Washington
Gelman stacks
QA 21 .S88 Available Request
American
WRLC Shared Collections Facility
Q125 .S6 v.1 Off-site
Request
UDC
Van Ness stacks
QA21 .S88 Available Request
George Mason
Fenwick stacks
QA21.S8 S6 Available Request
Fenwick stacks
QA21.S8 S6 Available Request
Other Authors Struik, Dirk J. 1894-2000,
Subjects Grundlage.
Mathematics -- Early works to 1800.
Mathematics -- History.
Mathematics.
Mathematik.
Mathématiques - Histoire.
Mathématiques -- 13e siècle.
Mathématiques -- 14e siècle.
Mathématiques -- 1500-1800.
Mathématiques -- Histoire -- Sources.
Mathématiques -- Histoire.
Series Source books in the history of the sciences.
Description xiv, 427 pages : illustrations, 27 cm.
Copyright Date 1969.
Notes Includes bibliographical references and index.
Contents Chapter I. Arithmetic -- 1. The rabbit problem / Leonardo of Pisa -- 2. Elementary arithmetic / Recorde -- 3. Decimal fractions / Stevin -- 4. Logarithms / Napier -- 5. The Pascal triangle / Pascal -- 6. Two Fermat theorems and Fermat numbers / Fermat -- 7. The "Pell" equation / Fermat -- 8. Power residues / Euler -- 9. Fermat's theorem for n = 3, 4 -- 10. Quadratic residues and the reciprocity theorem / Euler -- 11. The Goldbach theorem / Goldbach -- 12. The reciprocity theorem / Legendre -- Chapter II. Algebra -- 1. Quadratic equations / Al-Khwārizmī -- 2. The triparty / Chuquet -- 3. On cubic equations / Cardan -- 4. The biquadratic equation / Ferrari -- 5. The new algebra / Viète -- 6. The fundamental theorem of algebra / Girard -- 7. The new method / Descartes -- 8. Theory of equations / Descartes -- 9. The roots of an equation / Newton -- 10. The fundamental theorem of algebra / Euler -- 11. On the general theory of equations / Lagrange -- 12. Continued fractions / Legrange -- 13. The fundamental theorem of algebra / Gauss -- 14. Mathematical logic / Leibniz -- Chapter III. Geometry -- 1. The latitude of forms / Oresme -- 2. Trigonometry / Regiomontanus -- 3. Coordinate geometry / Fermat -- 4. The principle of nonhomogeneity / Descartes -- 5. The equation of a curve / Descartes -- 6. Involution and perspective triangles / Desargues -- 7. Theorem on conics / Pascal -- 8. Cubic curves / Newton -- 9. The versiera / Agnesi -- 10. Cramer's paradox / Cramer and Euler -- 11. The bridges of Königsberg -- Chapter IV. Analysis before Newton and Leibniz -- 1. Center of gravity / Stevin -- 2. Integration methods / Kepler -- 3. On infinites and infinitesimals / Galilei -- 4. Accelerated motion / Galilei -- 5. Principle of Cavalieri / Cavalieri -- 6. Integration / Cavalieri -- 7. Integration / Fermat -- 8. Maxima and minima / Fermat -- 9. Volume of an infinite solid / Torricelli -- 10. The cycloid / Roberval -- 11. The integration of sines / Pascal -- 12. Partial integration / Pascal -- 13. Computation of [pi] by successive interpolations / Wallis -- 14. The fundamental theorem of calculus / Barrow -- 15. Evolutes and involutes / Huygens -- Chapter V. Newton, Leibniz, and their school -- 1. The first publication of his differential calculus / Leibniz -- 2. The first publication of his integral calculus / Leibniz -- 3. The fundamental theorem of calculus / Leibniz -- 4. Binomial series / Newton and Gregory -- 5. Prime and ultimate ratios / Newton -- 6. Genita and moments / Newton -- 7. Quadrature of curves / Newton -- 8. The analysis of the infinitesimally small / L'Hôpital -- 9. Sequences and series / Jakob Bernoulli -- 10. Integration / Johann Bernoulli -- 11. The Taylor series / Taylor -- 12. The analyst / Berkeley -- 13. On series and extremes / Maclaurin -- 14. On limits / D'Alembert -- 15. Trigonometry / Euler -- 16. The vibrating string and its partial differential equation / D'Alembert, Euler, Daniel Bernoulli -- 17. Irrationality of [pi] / Lambert -- 18. Addition theorem of elliptic integrals / Fagnano and Euler -- 19. The metaphysics of the calculus / Euler, Landen, Lagrange -- 20. The brachystochrone / Johann and Jakob Bernoulli -- 21. The calculus of variations / Euler -- 22. The calculus of variations / Lagrange -- 23. The two curvatures of a curved surface / Monge.
Genre Early works.
Network Numbers (OCoLC)442245
(OCoLC)ocm00442245
WorldCat Search OCLC WorldCat

Services

Export citation to: RefWorks